比例问题早在先秦已见端倪。《九章》粟米章的今有术是完整的比例算法:已知所有数,所有率和所求率,则所求数为
所求数=所有数×所求率÷所有率。
这种方法传到印度和西方后叫三率法(rule ofthree)。刘徽认为,今有术是一种普遍方法。凡是九数中的问题,只要能找出其中的率关系,通过齐同变换,无不归于此术。如《九章》均输章的题目:一客人离开旅馆时忘记带衣服,过了1/3天,主人发现了,骑马追上客人还给他衣服,回家时天已¾。客人的马一日行300里,问主人的马一日行多少?刘徽认为,¾-1/3=5/12是主人追客来回用日率,5/24是主人追客用日率,5/24+1/3=13/24是客人被追上前用日率。而主人用日率即客人马行率,客人用日率即主人马行率,因此客马行率5,为所有率,主马行率13,为所求率,300里为所有数。主人马一日行=300里×13÷5=780里。
比例分配方法古代叫衰分术,各部分的比例叫列衰。《九章》提出的方法是:设所分的数是A,列衰为a1、a2…ax,列衰之和为法,某一列衰ai(i=1,2……)乘所分的数A为实,实如法而一,便是某一部分Ai=Aai÷(a1+a2…+ax)。刘徽认为它可以归结为今有术:所分的数A为所有数,列衰之和为所有率,列衰各为所求率,某一部分为所求数。如《九章》衰分章一题目:牛、马、羊吃了人家的青苗,苗主要求赔偿5斗谷子。羊主说:我的羊只吃了马的一半;马主说:我的马只吃了牛的一半。问各赔偿多少?依衰分术,列衰是4、2、1,那么
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.ziyungong.cc
(>人<;)