《数学原理》最初不很受欢迎。大陆上的数理哲学分为两派,形式主义者和直观主义者。这两派都完全否认数学是从逻辑出来的,并且利用矛盾来证明他们的否认是正当的。
以希尔伯特为首的形式主义者主张,算术上的符号只是纸上的一些记号,全无意义,算术是由类乎下棋的规则的一些任意的规则而成,按照这些规则,可以把那些记号加以操作使用。这个学说有着避免一切哲学争论的有利条件,但它也有不能解释数字在计算中应用的不利条件。如果把○这个符号看做是指一百或一千或任何别的有限数,则形式主义者所提出的一切使用规则也就得到了证实。这个学说无法解释象“这间屋子里有三个人”或“有十二个使徒”这样一些简单的命题是什么意思。对于从事计算,这个学说是完全够用的,但是在数的应用上则是不够的。既然重要的是数的应用,形式主义者的这个学说不能不看做是一种不满人意的逃避。
以伯劳威为首的直观主义者的学说须更认真地讨论一下。这个学说的核心是否定排中律。这个学说认为,如果有一个方法能确定一个命题是正确或错误,那个命题才能算是正确或错误。常见的例子之中有一个就是这样一个命题:“在π的小数计算中有三个连续的七”。就已经求出来的π的值来说,并没有三个连续的七,但是没有理由假定在后来的一个地方这就不会出现。如果今后看来果真有一个地方有三个连续的七出现,问题就解决了,但是,如果这样一个地方没有达到,那并不能证明后来不会有这样一个地方。所以,虽然我们也许完全能证明是有三个连续的七,我们却永远不能证明没有。这个问题对于分析是很重要的。不尽的小数有时候是按一条定律来进行,这条定律使我们能够随意计算多少项。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.ziyungong.cc
(>人<;)