电脑版
首页

搜索 繁体

55、为什么我们总是说某一同位素的半衰期,而不谈它的总寿命呢?

热门小说推荐

最近更新小说

有些原子是不稳定的,这样的原子如果听其自然,早晚必定会自发地发生变化。那时就会有一个高能粒子或γ射线光子从它的原子核里飞出,因而它就变成另一种原子(属于同一种元素的原子可以称为这种元素的同位素)。如果在某个地方有大量的不稳定原子,它们就会朝四面八方辐射出粒子或γ射线,所以我们说,这样的原子是放射性的。

我们无法说一个特定的放射性原子什么时候会发生变化。这可能在一秒钟内发生,也可能过了一年还不发生,甚至可能过一千万亿年还不发生。因此,你无法测定放射性原子的“总寿命”(即它保持不变的时间)。这种“总寿命”可以具有任意值,所以,谈“总寿命”是没有用的。

不过,假定在某个地方有很多很多某种特定放射性同位素的原子。在任何一个指定的时刻,其中都有一些原子在发生变化。这时你会发现,尽管你在任何条件下都不能够说某个特定的原子将在什么时候发生变化,但你却可以预言说,在(比方说)一百万亿亿亿个原子当中,有多少个原子在多少秒钟以后会发生变化。

这是个统计学的问题。你完全不可能说出某个特定的美国人在某一年会不会死于车祸,但你却有可能相当精确地预言说,在某一年内会有某一数量的美国人在车祸中丧命。

只要给出大量某一特定同位素的原子,我们就可以测出它们在某一指定时刻的辐射量,因而就能够预言在将来任何时刻会有多大的辐射量(会有多少个原子在发生变化)。已经查明,只要把原子发生变化的方式规定下来,那么,不管在开始时有多少原子,在原子总数中有1/10发生变化所需要的时间总是相同的,事实上,这些原子当中的2/10(或4/17,19/573还是任何别的特定的分数)发生变化所需要的时间总是固定不变的,不管最初有多少个原子。

Loading...

未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。

尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!

移动流量偶尔打不开,可以切换电信、联通、Wifi。

收藏网址:www.ziyungong.cc

(>人<;)