当氢被加热到越来越高的温度时,它就会以越来越快的速率通过辐射丧失它的能量。另一方面,随着温度的继续上升,氢原子会失去它们的电子,只剩下裸露的原子核撞击在一起并发生聚变。当发生这样的聚变时,就会产生能量。这时,由于温度继续升高,便会通过聚变产生越来越多的能量。
随着温度的上升,聚变所产生的能量的数量增加的速率,将大于通过辐射损失能量的速率。在某一个临界温度下,聚变所产生的能量正好同通过辐射损失掉的能量一样多。在这种条件下,温度将保持不变,因而聚变反应就会变成自持的。
只要有更多的氢不断供给这样一个系统,能量就会源源不绝地产生出来。
发生聚变所要求的温度随着氢的“品种”的不同而改变。
最常见的是氢(H),它的原子核是由一个质子构成的。然而还有重氢,即氘(D),它的原子核由一个质子和一个中子构成;还有一种放射性氢,氚(T),它的原子核由一个质子和两个中子构成。
在一定的温度下,氘的聚变所产生的能量比氢的聚变多,而氚的聚变所产生的能量还要更多。
当只有氢发生聚变时,在一定温度下产生的能量太少了,因此,要在实验室中让这种反应持续进行下去,就要求温度超过摄氏十亿度。不错,在太阳的中心是氢在发生聚变,而那里的温度只有15,000,000℃,但是,在这样低的温度下,只有很小一部分氢参加聚变。但由于太阳上氢的数量极大,所以,尽管发生聚变的氢只占很小一部分,也已足以使太阳维持现有的辐射了。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.ziyungong.cc
(>人<;)