过度集中的通讯负荷并非中央大脑仅有的麻烦。中央内存的维护同样让人感到头痛。共享的内存必须严格、实时、准确地更新——很多公司对此都深有感触。对机器人来说,控制中心要承担的艰巨任务是根据自己的感知来编辑或更新一个“外部世界模型”,一个理论,或者一个表述——墙在哪里,门还有多远,还有,别忘了,留神那里的楼梯。
如果由不同感应器反馈回来的信息互相冲突,大脑中枢该怎么办?眼睛说有物体过来了,而耳朵却说那物体正在离去。大脑该信谁的?合乎常理的做法是尽力找出真相。于是,控制中心调节纠纷并重新修正信号,使之一致。在非包容结构的机器人中,中央大脑的计算资源大都消耗在根据不同视角的反馈信号绘制协调一致的外部世界映像上。系统每个部分对摄像头和红外传感器传回的海量数据有各自不同的解读,因而各自形成对外部世界大不一样的观感。这种情况下,大脑永远无法协调好所有的事情,因而总是一事无成。
要协调出一幅关于世界的中央视图实在太难了,而布鲁克斯发现利用现实世界作为其自身的模型要容易得多:“这个主意很棒,因为世界确实是其自身相当好的模型。”由于没有中央强制的模型,也就没有人承担调解争议的工作,争议本身本不需要调和。相反,不同的信号产生出不同的行为。在包容控制的网络层级中,行为是通过抑制、延迟、激活等方式被遴选出来的。
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.ziyungong.cc
(>人<;)