电脑版
首页

搜索 繁体

第五章 勾股测望 第二节 解勾股形

热门小说推荐

最近更新小说

《九章》勾股章提出了若干已知勾股形三边中二者的和差等因素,求其边长的例题。赵爽、刘徽、贾宪先后作了进一步的发展,提出了一般性的公式及其证明。

国内外流行的印度莲花问题实际上是《九章》“引葭赴岸”题的改写。此题是:有一水池,方1丈,一株葭〔jia佳,初生的芦苇〕生在中央,高出水面1尺,引葭赴岸,恰恰与岸边相齐。问水深、葭长各多少?如图15,刘徽指出,水池边长的一半为勾a,水深为股b,葭长为弦c,葭高于水面者是弦股差c-b,这是已知勾与弦股差,求股、弦的问题:

b=[a2-(c-b)2]/[2(c-b)],

c=(c-b)+b。

图15 引葭赴岸

图16 竹高折地

1989年语文高考试卷有一古文今译题便采自《九章》勾股章“竹高折地”问:今有一株竹高1丈,被折断,末梢抵地,抵地处距竹根3尺,问剩余高多少?如图16,刘徽指出,抵地处至竹根距离是勾a,剩余的高是股b,折断部分是弦c,则竹高就是股弦和c+b,此是已知勾与股弦和,求股的问题:b=[(c+b)2-a2]/[2(c+b)]。

这两类题目互相返覆,刘徽以出入相补原理证明之。

有一门户,高比宽多6尺8寸,两角相距1丈。问此门户高、宽各多少?刘徽认为,将户宽作为勾a,高为股b,两角相距为弦c,那么这是一个已知弦c与股勾差b-a,求勾、股的问题。《九章》的解法经刘徽改写成

Loading...

未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。

尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!

移动流量偶尔打不开,可以切换电信、联通、Wifi。

收藏网址:www.ziyungong.cc

(>人<;)